Dynamics of the generalized Euler equations on Virasoro groups

نویسندگان

  • Robert McLachlan
  • Xingyou Zhang
چکیده

We study the dynamics of the generalized Euler equations on Virasoro groups D̂(S1) with different Sobolev H metric (k ≥ 2) on the Virasoro algebra. We first prove that the solutions to generalized Euler equations will not blow up in finite time and then study the stability of the trivial solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Euler equations on homogeneous spaces and Virasoro orbits

We show that the following three systems related to various hydrodynamical approximations: the Korteweg–de Vries equation, the Camassa–Holm equation, and the Hunter–Saxton equation, have the same symmetry group and similar bihamiltonian structures. It turns out that their configuration space is the Virasoro group and all three dynamical systems can be regarded as equations of the geodesic flow ...

متن کامل

Approximated solution of First order Fuzzy Differential Equations under generalized differentiability

In this research, a numerical method by piecewise approximated method for solving fuzzy differential equations is introduced. In this method, the solution by piecewise fuzzy polynomial is present. The base of this method is using fuzzy Taylor expansion on initial value of fuzzy differential equations. The existence, uniqueness and convergence of the approximate solution are investigated. To sho...

متن کامل

Discrete Lagrangian Systems on the Virasoro Group and Camassa-holm Family

We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE’s containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misio-lek as Euler equations on the Virasoro algebra for H1 α,βmetrics. Our result demonstrates a univers...

متن کامل

Multi-dimensional Virasoro algebra and quantum gravity

I review the multi-dimensional generalizations of the Virasoro algebra, i.e. the non-central Lie algebra extensions of the algebra vect(N) of general vector fields in N dimensions, and its Fock representations. Being the Noether symmetry of background independent theories such as N -dimensional general relativity, this algebra is expected to be relevant to the quantization of gravity. To this e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006